Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(3): 839-847, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516599

RESUMO

RNA cap methylations have been shown to be crucial for the life cycle, replication, and infection of ssRNA viruses, as well as for evading the host's innate immune system. Viral methyltransferases (MTases) therefore represent an attractive target for the development of compounds as tools and inhibitors. In coronaviruses, N7-methyltransferase function is localized in nsp14, which has become an increasingly important therapeutic target with the COVID-19 pandemic. In recent years, we have been developing SAH-derived bisubstrates with adenosine and an N-arylsulfonamide moiety targeting both SAM and RNA binding sites in nsp14. We report here the synthesis of 31 SAH analogues with the N-arylsulfonamide attached to the 5'-position of adenosine via different linkers such as N-ethylthioether, N-ethylsulfone, N-ethylamino or N-methyltriazole. The compounds were obtained efficiently by amine sulfonylation or click chemistry. Their ability to inhibit SARS-CoV-2 N7-MTase was evaluated and the best inhibitors showed a submicromolar inhibitory activity against N7-MTase nsp14.

2.
Bioorg Chem ; 143: 107035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199140

RESUMO

Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Metiltransferases/metabolismo , Metilação , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , SARS-CoV-2/metabolismo , RNA Viral , Zika virus/metabolismo
3.
Chembiochem ; 24(22): e202300544, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37666794

RESUMO

Given the importance of mRNA with 5'-cap, easy access to RNA substrates with different 7m G caps, of high quality and in large quantities is essential to elucidate the roles of RNA and the regulation of underlying processes. In addition to existing synthetic routes to 5'-cap RNA based on enzymatic, chemical or chemo-enzymatic methods, we present here an all-chemical method for synthetic RNA capping. The novelty of this study lies in the fact that the capping reaction is performed on solid-support after automated RNA assembly using commercial 2'-O-propionyloxymethyl ribonucleoside phosphoramidites, which enable final RNA deprotection under mild conditions while preserving both 7m G-cap and RNA integrity. The capping reaction is efficiently carried out between a 5'-phosphoroimidazolide RNA anchored on the support and 7m GDP in DMF in the presence of zinc chloride. Substantial amounts of 7m G-cap RNA (from 1 to 28 nucleotides in length and of any sequence with or without internal methylations) containing various cap structures (7m GpppA, 7m GpppAm , 7m Gpppm6 A, 7m Gpppm6 Am , 7m GpppG, 7m GpppGm ) were obtained with high purity after IEX-HPLC purification. This capping method using solid-phase chemistry is convenient to perform and provides access to valuable RNA substrates as useful research tools to unravel specific issues regarding cap-related processes.


Assuntos
Metiltransferases , Ribonucleosídeos , Metiltransferases/metabolismo , Capuzes de RNA , Metilação , RNA Mensageiro
4.
Eur J Med Chem ; 256: 115474, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192550

RESUMO

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/metabolismo , Adenosina/farmacologia , Pandemias , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia , S-Adenosilmetionina , RNA Viral/genética , Adenina
5.
Antiviral Res ; 212: 105574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905944

RESUMO

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
6.
Nucleic Acids Res ; 51(6): 2501-2515, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36354007

RESUMO

RNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20). Biochemical experiments showed that ISG20-mediated degradation of 2'O-methylated RNA pauses two nucleotides upstream of and at the methylated residue. Structure-function analysis indicated that this inhibition is due to steric clash between ISG20 R53 and D90 residues and the 2'O-methylated nucleotide. We confirmed that hypomethylated HIV-1 genomes produced in FTSJ3-KO cells were more prone to in vitro degradation by ISG20 than those produced in cells expressing FTSJ3. Finally, we found that reverse-transcription of hypomethylated HIV-1 was impaired in T cells by interferon-induced ISG20, demonstrating the direct antagonist effect of 2'O-methylation on ISG20-mediated antiviral activity.


Despite highly effective antiretroviral therapies, the human immunodeficiency virus (HIV-1) remains a major public health threat. Its pathogenesis depends on its ability to establish a persistent infection in cells of the immune system. Our study highlights a new insight into how HIV-1 evades early restriction by the immune system. We showed that 2'O-methylation marks found inside HIV-1 RNA promote viral evasion from the antiviral action of the interferon-stimulated gene 20-kDa protein (ISG20), an innate immune restriction factor with a nuclease activity. By disrupting the level of 2'O-methylation of the HIV-1 genome, we demonstrated that ISG20 impairs the reverse transcription process of hypomethylated viruses, as a result of viral RNA decay.


Assuntos
Exorribonucleases , Infecções por HIV , HIV-1 , RNA Viral , Humanos , Exorribonucleases/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Parasita , Interferons , Metilação , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo
7.
Nucleic Acids Res ; 50(19): 11186-11198, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36265859

RESUMO

The order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous. In Coronaviridae, the best characterized family, two distinct methytransferases perform methylation of the N7-guanine and 2'-OH of the RNA-cap to generate a cap-1 structure (m7GpppNm). The genes of both of these enzymes are located in the ORF1b genomic region. While 2'-O-MTases can be identified for most other families based on conservation of both sequence motifs and genetic loci, identification of the N7-guanine methyltransferase has proved more challenging. Recently, we identified a putative N7-MTase domain in the ORF1a region (N7-MT-1a) of certain members of the large genome Tobaniviridae family. Here, we demonstrate that this domain indeed harbors N7-specific methyltransferase activity. We present its structure as the first N7-specific Rossmann-fold (RF) MTase identified for (+)RNA viruses, making it remarkably different from that of the known Coronaviridae ORF1b N7-MTase gene. We discuss the evolutionary implications of such an appearance in this unexpected location in the genome, which introduces a split-off in the classification of Tobaniviridae.


Assuntos
Nidovirales , Capuzes de RNA , Humanos , Capuzes de RNA/genética , Metiltransferases/genética , Metiltransferases/química , Guanina , Genoma Viral , RNA Viral/genética
8.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36156055

RESUMO

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Assuntos
Tratamento Farmacológico da COVID-19 , Metiltransferases , Adenosina/farmacologia , Antivirais/farmacologia , Azidas , Exorribonucleases/química , Exorribonucleases/genética , Guanina , Humanos , Nucleosídeos/farmacologia , Capuzes de RNA , RNA Viral/genética , SARS-CoV-2 , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
9.
J Biol Chem ; 298(9): 102337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931116

RESUMO

Respiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N0. Stabilization of N0 depends on the binding of the N-terminal residues of P to its surface, which prevents N oligomerization. However, the mechanism involved in the transition from N0-P to nucleocapsid assembly, and thus in the specificity of viral genome encapsidation, is still unknown. Furthermore, the specific role of N oligomerization and RNA in the morphogenesis of viral factories, where viral transcription and replication occur, have not been elucidated although the interaction between P and N complexed to RNA has been shown to be responsible for this process. Here, using a chimeric protein comprising N and the first 40 N-terminal residues of P, we succeeded in purifying a recombinant N0-like protein competent for RNA encapsidation in vitro. Our results showed the importance of RNA length for stable encapsidation and revealed that the nature of the 5' end of RNA does not explain the specificity of encapsidation. Finally, we showed that RNA encapsidation is crucial for the in vitro reconstitution of pseudo-viral factories. Together, our findings provide insight into respiratory syncytial virus viral genome encapsidation specificity.


Assuntos
Nucleocapsídeo , Nucleoproteínas , RNA Viral , Vírus Sincicial Respiratório Humano , Empacotamento do Genoma Viral , Proteínas Estruturais Virais , Humanos , Nucleocapsídeo/química , Nucleocapsídeo/fisiologia , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/química , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo
10.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439007

RESUMO

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virologia , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/química , Humanos , Metiltransferases , Simulação de Acoplamento Molecular , RNA Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
11.
PLoS Pathog ; 17(5): e1009562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956914

RESUMO

Respiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus and one of the main causes of severe lower respiratory tract infections in infants and young children. RSV RNA replication/transcription and capping are ensured by the viral Large (L) protein. The L protein contains a polymerase domain associated with a polyribonucleotidyl transferase domain in its N-terminus, and a methyltransferase (MTase) domain followed by the C-terminal domain (CTD) enriched in basic amino acids at its C-terminus. The MTase-CTD of Mononegavirales forms a clamp to accommodate RNA that is subsequently methylated on the cap structure and depending on the virus, on internal positions. These enzymatic activities are essential for efficient viral mRNA translation into proteins, and to prevent the recognition of uncapped viral RNA by innate immunity sensors. In this work, we demonstrated that the MTase-CTD of RSV, as well as the full-length L protein in complex with phosphoprotein (P), catalyzes the N7- and 2'-O-methylation of the cap structure of a short RNA sequence that corresponds to the 5' end of viral mRNA. Using different experimental systems, we showed that the RSV MTase-CTD methylates the cap structure with a preference for N7-methylation as first reaction. However, we did not observe cap-independent internal methylation, as recently evidenced for the Ebola virus MTase. We also found that at µM concentrations, sinefungin, a S-adenosylmethionine analogue, inhibits the MTase activity of the RSV L protein and of the MTase-CTD domain. Altogether, these results suggest that the RSV MTase domain specifically recognizes viral RNA decorated by a cap structure and catalyzes its methylation, which is required for translation and innate immune system subversion.


Assuntos
Metilação de DNA , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Imunidade Inata , Metiltransferases/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
12.
Nat Commun ; 12(1): 1716, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741917

RESUMO

Cancer stem cells (CSCs) are a small but critical cell population for cancer biology since they display inherent resistance to standard therapies and give rise to metastases. Despite accruing evidence establishing a link between deregulation of epitranscriptome-related players and tumorigenic process, the role of messenger RNA (mRNA) modifications in the regulation of CSC properties remains poorly understood. Here, we show that the cytoplasmic pool of fat mass and obesity-associated protein (FTO) impedes CSC abilities in colorectal cancer through its N6,2'-O-dimethyladenosine (m6Am) demethylase activity. While m6Am is strategically located next to the m7G-mRNA cap, its biological function is not well understood and has not been addressed in cancer. Low FTO expression in patient-derived cell lines elevates m6Am level in mRNA which results in enhanced in vivo tumorigenicity and chemoresistance. Inhibition of the nuclear m6Am methyltransferase, PCIF1/CAPAM, fully reverses this phenotype, stressing the role of m6Am modification in stem-like properties acquisition. FTO-mediated regulation of m6Am marking constitutes a reversible pathway controlling CSC abilities. Altogether, our findings bring to light the first biological function of the m6Am modification and its potential adverse consequences for colorectal cancer management.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neoplasias Colorretais/metabolismo , Citoplasma/metabolismo , Desmetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo
13.
Nucleic Acids Res ; 49(3): 1737-1748, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33503246

RESUMO

The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide. Unlike other Mononegavirales viruses, the Ebola virus methyltransferase also catalyses 2'-O-methylation of adenosines located within the RNA sequences. Herein, we report the crystal structure at 1.8 Å resolution of the Ebola virus methyltransferase domain bound to a fragment of a camelid single-chain antibody. We identified structural determinants and key amino acids specifically involved in the internal adenosine-2'-O-methylation from cap-related methylations. These results provide the first high resolution structure of an ebolavirus L protein domain, and the framework to investigate the effects of epitranscriptomic modifications and to design possible antiviral drugs against the Filoviridae family.


Assuntos
Ebolavirus/enzimologia , Metiltransferases/química , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica em alfa-Hélice , Anticorpos de Domínio Único/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Eur J Med Chem ; 201: 112557, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563813

RESUMO

The spreading of new viruses is known to provoke global human health threat. The current COVID-19 pandemic caused by the recently emerged coronavirus SARS-CoV-2 is one significant and unfortunate example of what the world will have to face in the future with emerging viruses in absence of appropriate treatment. The discovery of potent and specific antiviral inhibitors and/or vaccines to fight these massive outbreaks is an urgent research priority. Enzymes involved in the capping pathway of viruses and more specifically RNA N7- or 2'O-methyltransferases (MTases) are now admitted as potential targets for antiviral chemotherapy. We designed bisubstrate inhibitors by mimicking the transition state of the 2'-O-methylation of the cap RNA in order to block viral 2'-O MTases. This work resulted in the synthesis of 16 adenine dinucleosides with both adenosines connected by various nitrogen-containing linkers. Unexpectedly, all the bisubstrate compounds were barely active against 2'-O MTases of several flaviviruses or SARS-CoV but surprisingly, seven of them showed efficient and specific inhibition against SARS-CoV N7-MTase (nsp14) in the micromolar to submicromolar range. The most active nsp14 inhibitor identified is as potent as but particularly more specific than the broad-spectrum MTase inhibitor, sinefungin. Molecular docking suggests that the inhibitor binds to a pocket formed by the S-adenosyl methionine (SAM) and cap RNA binding sites, conserved among SARS-CoV nsp14. These dinucleoside SAM analogs will serve as starting points for the development of next inhibitors for SARS-CoV-2 nsp14 N7-MTase.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Nucleosídeos/química , Pneumonia Viral/tratamento farmacológico , Capuzes de RNA/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenina/química , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Exorribonucleases/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
16.
Molecules ; 25(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545345

RESUMO

Co-delivery systems of siRNA and chemotherapeutic drugs have been developed as an attractive strategy to optimize the efficacy of chemotherapy towards cancer cells with multidrug resistance. In these typical systems, siRNAs are usually associated to drugs within a carrier but without covalent interactions with the risk of a premature release and degradation of the drugs inside the cells. To address this issue, we propose a covalent approach to co-deliver a siRNA-drug conjugate with a redox-responsive self-immolative linker prone to intracellular glutathione-mediated disulfide cleavage. Herein, we report the use of two disulfide bonds connected by a pentane spacer or a p-xylene spacer as self-immolative linker between the primary amine of the anticancer drug doxorubicin (Dox) and the 2'-position of one or two ribonucleotides in RNA. Five Dox-RNA conjugates were successfully synthesized using two successive thiol-disulfide exchange reactions. The Dox-RNA conjugates were annealed with their complementary strands and the duplexes were shown to form an A-helix sufficiently stable under physiological conditions. The enzymatic stability of Dox-siRNAs in human serum was enhanced compared to the unmodified siRNA, especially when two Dox are attached to siRNA. The release of native Dox and RNA from the bioconjugate was demonstrated under reducing conditions suggesting efficient linker disintegration. These results demonstrate the feasibility of making siRNA-drug conjugates via disulfide-based self-immolative linkers for potential therapeutic applications.


Assuntos
Dissulfetos/química , Doxorrubicina/química , RNA Interferente Pequeno/química , Estabilidade de Medicamentos , Glutationa/química , Humanos , Estrutura Molecular , Soro/química
17.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269120

RESUMO

The large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures. In addition, the MTase of Ebola virus can induce cap-independent internal adenosine 2'-O-methylation. In this work, we investigated the CTD role in the regulation of the cap-dependent and cap-independent MTase activities of the L protein. We found that the CTD, which is enriched in basic amino acids, plays a key role in RNA binding and in turn regulates the different MTase activities. We demonstrated that the mutation of CTD residues modulates specifically the different MTase activities. Altogether, our results highlight the pivotal role of the L protein CTD in the control of viral RNA methylation, which is critical for Ebola virus replication and escape from the innate response in infected cells.IMPORTANCE Ebola virus infects human and nonhuman primates, causing severe infections that are often fatal. The epidemics, in West and Central Africa, emphasize the urgent need to develop antiviral therapies. The Ebola virus large protein (L), which is the central protein for viral RNA replication/transcription, harbors a methyltransferase domain followed by a C-terminal domain of unknown function. We show that the C-terminal domain regulates the L protein methyltransferase activities and consequently participates in viral replication and escape of the host innate immunity.


Assuntos
Ebolavirus/genética , Metiltransferases/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Ebolavirus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Metilação , Metiltransferases/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
18.
Mol Cell ; 75(3): 631-643.e8, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279658

RESUMO

mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N6-methyladenosine (m6A), found within mRNAs, and N6,2'-O-dimethyladenosine (m6Am), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates m6Am. We find that PCIF1 binds and is dependent on the m7G cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish m6Am and m6A. We find that m6A and m6Am misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain m6Am that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of m6Am-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize m6Am's function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcriptoma/genética , Adenosina/genética , Humanos , Metilação , Metiltransferases/genética , Biossíntese de Proteínas/genética , Sítio de Iniciação de Transcrição
19.
Chembiochem ; 20(13): 1693-1700, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768827

RESUMO

Eukaryotic RNAs are heavily processed, including co- and post-transcriptional formation of various 5' caps. In small nuclear RNAs (snRNAs) or small nucleolar RNAs (snoRNAs), the canonical 7m G cap is hypermethylated at the N2 -position, whereas in higher eukaryotes and viruses 2'-O-methylation of the first transcribed nucleotide yields the cap1 structure. The function and potential dynamics of several RNA cap modifications have not been fully elucidated, which necessitates preparative access to these caps. However, the introduction of these modifications during chemical solid-phase synthesis is challenging and enzymatic production of defined short and uniform RNAs also faces difficulties. In this work, the chemical synthesis of RNA is combined with site-specific enzymatic methylation by using the methyltransferases human trimethylguanosine synthase 1 (hTgs1), trimethylguanosine synthase from Giardia lamblia (GlaTgs2), and cap methyltransferase 1 (CMTR1). It is shown that RNAs with di-and trimethylated caps, as well as RNAs with caps methylated at the 2'-O-position of the first transcribed nucleotide, can be conveniently prepared. These highly modified RNAs, with a defined and uniform sequence, are hard to access by in vitro transcription or chemical synthesis alone.


Assuntos
Metiltransferases/química , Análogos de Capuz de RNA/síntese química , Giardia lamblia/enzimologia , Humanos , Metilação , Complexos Multienzimáticos/química , Nucleotidiltransferases/química , Monoéster Fosfórico Hidrolases/química , Vaccinia/enzimologia , Proteínas Virais/química
20.
Nat Chem Biol ; 15(4): 340-347, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778204

RESUMO

Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m1 and m2, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m1 isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m2 isoform (N6,2'-O-dimethyladenosine, m6Am). The relative m1 and m2 isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m2 isoform. We show FTO is inhibited by the oncometabolite D-2-hydroxyglutarate, resulting in increased m2-snRNA levels. Furthermore, cells that exhibit high m2-snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO controls a previously unknown central step of snRNA processing involving reversible methylation, and suggest that epitranscriptomic information in snRNA may influence mRNA splicing.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , RNA Nuclear Pequeno/biossíntese , Adenosina/biossíntese , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Processamento Alternativo , Animais , Células HEK293 , Humanos , Masculino , Metilação , Camundongos , Camundongos Knockout , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Nuclear Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...